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Chapter 1

Introduction

Because this is a joint French-American project where one author is actually German, we thought it proper to use the
Spanish/Italian word Rapsodia as an acronym for

rapide surcharge d’opérateur pour la différentiation automatique.

The main idea of Rapsodia is to combine operator overloading with code generation. The generator creates a library consisting
of active types and operators overloaded for these active types for a given number n of input variables and a given derivative
order o. Because n and o are fixed the generator can create a specialized code which yields a performance advantage. This
code propagates Taylor coefficients up to degree o in a preset number of directions. The computed Taylor coefficients of the
output variables can then be used in an interpolation scheme to compute all entries of the derivtive tensors up to order o.

Not surprisingly, very few differences exist between general-purpose languages such as Fortran and C/C++ in the repre-
sentation of the elementary operations that are being overloaded (see also Sec. 3.1.1). Therefore, a single generator has been
developed to produce a Fortran and a C++ libraries simultaneously.

1.1 Installation

This section covers download, configuration and building (of the non-generated portions) of Rapsodia.

1.1.1 Download the Sources

The Rapsodia source code can be downloaded as a tar file from the website

http://www.mcs.anl.gov/rapsodia

or accessed via version control, see below. The source can be unpacked with

tar -zxvf Rapsodia <date> .tgz

which will create a Rapsodia directory. To avoid having to give system specific variations for each command we also assume
that we are on a Linux system in a bash environment where GNU make and C/C++/Fortran compilers are installed. The
CC, CXX, and F90C shell variables point to the respective compilers. We also assume a Python version 2.4 or newer available
through PATH. While Python is in principle platform independent, the code in Rapsodia is currently not entirely platform
independent.

The version control system for the Rapsodia development is mercurial[5]. A link to the current development repository
and instructions on how to clone the repository are listed in the Rapsodia website.

1.1.2 Configuration

There is a small set of options being set through a configuration step which depend on the compiler versions and external
libraries. There are also some checks being executed to ensure proper function. The configuration options are shown by
executing Rapsodia/configure.py -h.

3
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CHAPTER 1. INTRODUCTION

Usage: configure.py [options]
used to set up make rules and definitions for building Rapsodia generated sources and support libraries

Options:
-h, --help show this help message and exit
-f FORTCOMP, --fortranCompiler=FORTCOMP

pick a Fortran compiler (defaults to gfortran) from: [
sunf95 | pgf95 | mpixlf90 | xlf | mpif90 | nagfor |
g95 | af95 | bgxlf | gfortran | ifort ] - the compiler
should be in your PATH

-c CXXCOMP, --cPlusPlusCompiler=CXXCOMP
pick a C++ compiler (defaults to g++) from: [ nvcc |
sunCC | xlC | icpc | bgxlC | g++ | pgcpp | mpicxx |
mpixlcxx ] - the compiler should be in your PATH

-m MIXEDLINKER, --mixedLanguageLinker=MIXEDLINKER
pick a linker for mixed language applications - the
linker should be in your PATH (default none); this
configure knows flags for: (’g++’, ’gfortran’),
(’pgcpp’, ’pgf95’), (’g++’, ’nagfor’), (’icpc’,
’ifort’)

-d, --debug setup for compiling with full debug information
(defaults to False)

--fortranLongLines permit lines longer than the standard length (default
False)

--fortranFixedFormat use fixed instead of free format (default False)
-q, --queue set up for multithreaded queue(default False)
--withOpenPA=<path_to_openpa>

use the OpenPA library (defaults to False); implies -q
--noCheck do not run checks during configuration (defaults to

False)
--noCleanup if the configuration check fails do not remove the

associated files (defaults to False)
--compilerConfigs print the flags for all the compilers that this

configure script covers (defaults to False)

Almost all options are self-explanatory. The queue option --queue is explained in Sec. 2.5.2 and it may be combined with
the OpenPA library available at http://trac.mcs.anl.gov/projects/openpa/ whose install directory can be specified
using the --withOpenPA option. The configure.py script creates Rapsodia/MakeDefs.mk and Rapsodia/MakeRules.mk

that contain compiler flags (based on the compilers specified), some environment variables and suffix rules, see also Sec. 2.5.

1.1.3 Build

After the configuration step has completed, the fixed portions of the support library for the interpolation can be compiled
within the Rapsodia directory by invoking

make

A sanity check of the tool can be executed via

make check

1.1.4 Examples

Similar to the core system, a set of examples used in this manual are available via mercurial under the repository name
RapsodiaExamples. To obtain the examples follow the intructions on http://www.mcs.anl.gov/rapsodia (go to Access).

The Makefiles in the examples assume that in the shell environment RAPSODIAROOT is set to the absolute path to the
Rapsodia directory. Some of the examples are discussed in this manual. All examples can be built and run within the
RapsodiaExamples directory by invoking

make

This step, however, will skip the Extras subdirectory whose contents is covered in Sec. 2.8.4.

1.2 A One Minute Example

As a starting point we show a small example where we compute y=sin(x) at the point 0.3. The source code for this example
can be found in RapsodiaExamples/CppOneMinute which can be downloaded as described in Sec. 1.1.4.

The example can be compiled and run by changing to this directory and typing make. After convincing ourselfs that the
Rapsodia tool runs ok we can now look at the steps that were taken to make this example work. The original code is in
driverO.cpp which we show in Fig. 1.1. Here we assume we want to compute just the Taylor coefficients (see Sec. 1.3.1)
up to order three in two directions. The code changes to the original source, explained in the following text, can be seen
in Fig. 1.2. To enable operator overloading we need to change the type of the floating point variables x and y to a special

vers. hg:1bef2728f6ea:40 4 Rapsodia: User Manual
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1.3. Basic Concepts

1 #include <iostream>
2 #include <cmath>
3
4 int main(void){
5 double x,y;
6 // the point at which we test
7 x=0.3;
8 // compute sine
9 y=sin(x);

10 // print it
11 std::cout << ”y=” << y << std::endl;
12 }

Figure 1.1: Original source code of the example

type. Rapsodia creates such a type named RAfloatD which is the active floating point type where the D stands for double
precision. We need to include the Rapsodia header file RAinclude.ipp. We define constants d and o for the directions and
the order, respectively. We need to initialize the coefficients of the inputs. The actual computation statement y=sin(x)

remains unchanged. Because the type of x and y has been changed the overloaded version for sin is called automatically. At
the end we retrieve and print the Taylor coefficients for y. Of course, in a real world example we assume the computation to
be much larger than a single line.

Now we need to let Rapsodia generate the library for the two directions and Taylor coefficients up to order three. This
is done within RapsodiaExamples/CppOneMinute by invoking

generate.py -d 2 -o 3 -c RALib

One can see this step in RapsodiaExamples/CppOneMinute/Makefile. All the header and source files for the generated
overloading library can now be found in the RapsodiaExamples/CppOneMinute/RALib subdirectory whose name was specified
with the -c command line switch. Also generated in this subdirectory is a Makefile, which is used to compile the generated
code and create a static library called libRapsodia.a. This library is linked with driver.o to create the driver binary and
when this is run we obtain the output shown in Fig. 1.3.

1.3 Basic Concepts

In the following we want to explain some concepts that are necessary to understand the terms used in the Sec. 2. The readers
familiar with automatic differentiation and overloading should skip this section.

1.3.1 Propagating Taylor Coefficients with Automatic Differentiation

The basic principles of automatic differentiation (AD) have been known for several decades [9], but only since the mid 1990s
have the tools implementing AD found significant use in optimization, data assimilation, and other applications in need of
efficient and accurate derivative information. As a consequence of the wider use of AD, various tools have been developed
that address specific application requirements or programming languages. The AD community’s website

www.autodiff.org

provides a comprehensive overview of the available tools. Only a small subset of these tools is capable of computing higher-
order derivatives. Aside from a number of unfinished or no longer maintained projects, the practically relevant choices are
AD02 for Fortran [7] and Adol-C for C and C++ [2]. Like Rapsodia, both rely on operator overloading as the vehicle
of attaching derivative computations to the elementary operations φ provided by the programming language such as the
arithmetic operators and intrinsic functions sin, ex, and so forth.

A program implementing a numerical model

y = f(x) : IRn 7→ IRm (1.1)

is viewed as a sequence of such elementary operations. As all AD tools do, we perform the computation of the derivative of
f by applying the chain rule to the sequence of φ comprising f.

The commonly taken approach for derivative tensors of order three and above is the forward propagation of Taylor
polynomials up to order o in d directions with coefficients aij , j = 1 . . . o, i = 1 . . . d around a common point a0 ≡ ai0. The
Taylor polynomial is nothing but a Taylor series truncated at order o

φ(ao + h) = φ(a0) + φ′(a0) · h+
φ′′(a0)

2!
· h2 + . . .+

φ(d)(a0)

o!
· ho (1.2)

Rapsodia: User Manual 5 vers. hg:1bef2728f6ea:40
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CHAPTER 1. INTRODUCTION

#include <iostream>
#include <cmath>

#include "RAinclude.ipp" // added

int main(void){
int i,j; // added
const int directions=2; // -"-
const int order=3; // -"-
RAfloatD x,y; // type changed
// the point at which we test
x=0.3;
// initialize the input coefficients // added
// in the 2 directions // -"-
for( i=0;i<directions;i++) { // -"-
for( j=0;j<order; j++) { // -"-

if (j==0) // -"-
x.set(i+1,j+1,0.1*(i+1)); // -"-

else // -"-
x.set(i+1,j+1,0.0); // -"-

} // -"-
} // -"-
// compute sine
y=sin(x);
// print it
std::cout << "y="<< y.v << std::endl; // modified
// get the output Taylor coefficients // added
// for each of the 2 directions // -"-
for( i=0;i<directions;i++) { // -"-
for( j=0;j<order; j++) { // -"-

std::cout << "y["<< i+1 // -"-
<< "," << j+1 // -"-
<< "]=" // -"-
<< y.get(i+1,j+1) // -"-
<< std::endl; // -"-

} // -"-
} // -"-

}

Figure 1.2: Source code of the example modified for Rapsodia

y=0.29552
y[1,1]=0.0955336
y[1,2]=-0.0014776
y[1,3]=-0.000159223
y[2,1]=0.191067
y[2,2]=-0.0059104
y[2,3]=-0.00127378

Figure 1.3: Computed output value Taylor coefficients for two directions up to order three

The propagation of coefficients is done on the level of the elementary operations. For each r = φ(a, b, . . .) with result r and
arguments a, b, . . .1 we compute the result’s Taylor coefficients rij based on the Taylor coefficients of the arguments aij , b

i
j , . . ..

For instance, for the addition r = a+ b the formula is simply

rij = aij + bij .

For the multiplication r = a · b it is the convolution

rij =

j∑
l=0

ail · bij−l .

The complete set of formulas for the elementary operations occurring in C++ and Fortran is given in [4].
In the following we denote with x0 the given point in the domain of f. To compute the actual derivative tensors, we

employ the approach described in [3], which is based on the propagation of univariate Taylor polynomials in a predefined
number of directions and subsequent interpolation of the tensor elements. The details of the approach and the supporting
driver routines are described in Sec. 1.3.3. We denote a given set of d directions, also referred to as the seed matrix, with
S ∈ IRn×d. The columns of the seed matrix are used to set the respective first Taylor coefficients of the n input variables
xi1 = si ∈ IRn and the higher order coefficients are nullified xij = O|j=2...o. The coefficients of the m outputs yij are the

coefficients of the univariate Taylor series f(x0 + hsi).

1 In practice most φ are uni- or bivariate.
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1.3. Basic Concepts

1.3.2 Active Variables and Overloading

Modern programming languages such as C++ or the more recent versions of Fortran have the capability of overloading
operators and intrinsic functions φ. It is very conveniently used for automatic differentiation because it allows us to replace
the meaning of the programming language’s built-in operators and intrinsics with the derivative semantics. The invocation of
the overloaded φ is tied to the use of program variables of a specific type or set of types. Therefore, aside from initialization
and derivative retrieval the only change that intrudes into the original program is a change of type declaration for floating
point variables.

The output variables y, the input variables x, and all intermediate program variables on any dependency path from the
x to the y are called active variables and need to have their type changed to the specific active type(s). This type change
triggers the execution of the overloaded φ. All other variables are called passive. For overloading-based tools in practice
often all floating-point variable type declarations are changed to active type. This sometime implies a certain unnecessary
overhead because derivative computations are performed for passive variables. See also Sec. 2.

1.3.3 Higher-Order Tensor Drivers

An efficient approach to compute derivative tensors Do of order o ≥ 3 is laid out in [3] and has been previously implemented
within Adol-C. Rather than leaving the reimplementation to the user, we provide a Fortran and a C++ implementation as a
convenience together with the Rapsodia sources. Because symmetry increases with o in D, we want to compute and represent
just the distinct elements. Following [3], we use multi-indices t ∈ INn

0 , where each ti, i = 1 . . . n represents the derivative

order with respect to input xi. For instance, for n = 2,m = 1, the two Hessian elements H12 = ∂2

∂x1∂x2
and H21 = ∂2

∂x2∂x1
are

both represented by t = (1, 1). All distinct elements of Do are represented by the multi-indices t for which o ≡ |t| =
n∑

i=1

ti.

There are exactly
(
n+o−1

o

)
such multi-indices. We take each multi-index tj as a direction for which we propagate Taylor

polynomials of order o. In other words we have d ≡
(
n+o−1

o

)
and si ≡ ti, i = 1 . . . d. The resulting Taylor coefficients of

the output yij can then be interpolated to retrieve the elements of any Dj , j = 1 . . . o again identified by their respective
multi-indices t with |t| ≡ j. The precomputed interpolation coefficients depend only on o and n.

Rapsodia: User Manual 7 vers. hg:1bef2728f6ea:40
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Chapter 2

Usage

Not surprising, the usage follows the same pattern as all overloading-based AD tools. The pattern can be summarized into
the following four steps.

1. identify the set of input variables x and the set of output variables y and a section of the program or top-level subroutine
by which the model f is computed;

2. change the type of the inputs and outputs and all variables on dependence paths from the inputs to the outputs to
the generated active floating point type. In many cases a global type change for all floating point variables may be
appropriate;

3. adjust the code, e.g. statements for I/O and memory allocation;

4. in the driver logic that surrounds the model computation, inject logic to initialize the Taylor coefficients of the inputs
and retrieve the Taylor coefficients of the outputs and call the higher order tensor drivers when needed;

5. generate the overloading library and compile and link the source files.

The following Sec. 2.1 through Sec. 2.5 illustrate these steps in detail.

2.1 Identifying the Model Structure

For brevity we refer to the numerical model computation as f with inputs x and outputs y. Often the scenario in a real
numerical program is a bit more complicated. The inputs x may not be a vector of length n but rather a set of program
variables consisting of scalars, vectors and matrices. The same applies to the outputs. For the sake of initialization of
the coefficients with directions and retrieval of the result coefficients the programmer has to conceptually enumerate all
the scalars, and the individual array elements to n scalar quantities. The Rapsodia interface does not actually require the
inputs or outputs to be packed into floating point vectors of length n and m respectively. It does, however, require that the
(conceptual) enumeration be kept consistent across all direction initializations and retrieval of tensor elements for the inputs
and across retrieval of all result coefficients and passing them to the tensor interpolation routines for the outputs.

Often one will not have separate program variables for the inputs and the outputs but perhaps just some state variable.
Here it is simply the location of initialization and result retrieval in the program that implies what the inputs and outputs
are. Conceptually one should think of the value that a program variable attains at a certain stage in the program, rather
than just the program variable.

Finally, we assume in the program a dedicated section for initialization of the inputs and the use of the outputs. Those
locations would become the points at which the independents are initialized and the dependents results are retrieved. The
comments in the code shown in Fig. 2.1 1 illustrate the inputs, the outputs and the model section. We have the vector (a,b)
for both, the inputs and the outputs and assume our enumeration to be

(x1, x2) = (a,b) = (y1, y2) .

In the following sections the use of this enumeration will be explained.

1 See also RapsodiaExamples/CppStepByStep/driverO.cpp
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1 #include <iostream>
2 #include <cmath>
3
4 int main(void){
5
6 double a,b; // inputs & outputs
7 double c,d; // intermediate
8
9 double p=3.14; // a parameter

10 // initialize inputs
11 a=1.5;
12 b=2.5;
13 // here comes the program section
14 // where the mock up model is computed
15 c=sin(a∗b);
16 d=cos(c+b);
17 a=exp(c∗p);
18 b=sqrt(−d∗p);
19 // now we are done with the model
20 // and use the result, e.g. print it
21 std::cout << ”a=” << a << std::endl;
22 std::cout << ”b=” << b << std::endl;
23 }

Figure 2.1: The comments identify the inputs, the outputs and the model computation section.

in Fortran
real 4 Byte RArealS

real 8 Byte RArealD

complex 4 Byte RAcomplexS

complex 8 Byte RAcomplexD

in C++
float RAfloatS

double RAfloatD

Table 2.1: Active types generated by default.

2.2 Change Declarations to Active Type

The code generator creates active types that encapsulate different base types and precisions. The types generated by default
in Rapsodia are listed in Table 2.1 Based on the basic type and the precision in the original program one has to replace the
original floating point type with the appropriate Rapsodia-generated active type. All Rapsodia declarations are provided via
a single file that needs to be included.

C++: while forward declarations may suffice for some header files it is easier to just insert the directive

#include "RAinclude.ipp"

in every file that references any of the Rapsodia active types.

Fortran: every compile unit (e.g. a stand alone subroutine or module) that references the Rapsodia active types needs to

include ’RAinclude.i90’

Note, that we use the Fortran include syntax but the C preprocessor syntax would work as well.

Returning to our example, we find the variables a and b to be the inputs and outputs. The definition of active type indicates
that all variables on a dependency path are active which in our example are also c and d but not p because there is obviously
no path from the inputs to p. In AD tools that implement AD via source transformation the set of active variables is
determined by a specialized data flow analysis on the source code. For operator overloading one could do a global type
change but must observe some exceptions, see Sec. 2.3. In our example we change the double declarations at the beginning
of main to

RAfloatD a,b;

RAfloatD d,d;

and leave the declaration of p untouched.
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2.3 Adjustments after the Type Change

Any type change from a built-in floating point data type to one of the Rapsodia active types may encounter the following
problems.

Fortran and C++: The two problem scenarios are not particular to AD but rather apply to any type change done inside
a given program.

• I/O formats or the data access may have to be adjusted

• black box routines cannot be modified and must be called with the value component.2

C++: In many cases rectifying the following issues for AD lead to cleaner and more portable code.

• an active floating point variable may not be part of a union, see also Sec. 3.

• memory allocation with malloc must use the sizeof routine to determine the byte size of the active type and
must not hard-code the byte size of the floating point type.

• if the asynchronous queue approach is used (see Sec. 2.5.2), all malloc must be replaced with the appropriate new

calls.

Fortran Calls to user-defined subroutines with constant literals as actual arguments for formal arguments 3 must have an
explicit type conversion. For example, a subroutine with a signature defined as

subroutine foo(a, b)

real, intent(in) :: a

real, intent(out) :: b

may in the code be called in another subroutine

subroutine bar(...)

...

call foo(2.5,b)

but the change of the signature

subroutine foo(a, b)

type(RArealS), intent(in) :: a

type(RArealS), intent(out) :: b

then leads to a compile error for type mismatch if the interface of foo is known in bar. Otherwise the compiler assumes
F77 bindings and that simply leads to undefined behavior including segmentation faults during execution. To remedy
the situation one has to explicitly assure matching types in the call by introducing a temporary variable.

subroutine bar(...)

type(RAfloatS) :: temp

...

temp=2.5

call foo((temp,b)

In the case of our example (cf. Fig. 2.1) we encounter the first listed item as a problem. The lines that write the output
variables

std::cout << "a=" << a << std::endl;

std::cout << "b=" << b << std::endl;

have to be adjusted to print only the value component

std::cout << "a=" << a.v << std::endl;

std::cout << "b=" << b.v << std::endl;

because no output operator has been specified for the active type. While one could specify such an operator it would not
be appropriate in all cases. For instance, when data are transmitted via file from one part of the model to another part,
then the differentiated version should transmit the original value along with the Taylor coefficients. As long as the output
operator remains undefined the compiler has a better chance of alerting the user to the problem and the user can make an
informed adjustment.

2 A black box routine may not modify a conceptually active program variable on a path from the inputs to the outputs. If it does, this implies
parts of the model computation are not differentiated and consequently the results will be wrong.

3The Fortran standard calls them dummy arguments.
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2.4 Initialization and Result Retrieval

As in the example discussed in Sec. 1.2 we have to initialize the input coefficients and retrieve the output coefficients. This
time however we want to obtain the full derivative tensors. The directions for which Taylor coefficients have to be propagated
and the interpolation are provided by an instance of HigherOrderTensor in both Fortran and C++. Here we continue with
our C++ example4. We need to include the header file for HigherOrderTensor.

#include "HigherOrderTensor.hpp"

Here we have n = m = 2 and assume the order to be o = 3. We declare the order, the number inputs/outputs, variables to
contain the number of directions, and the instance of HigherOrderTensor.

unsigned short n=2,o=3;

HigherOrderTensor hot(n,o);

int dirs=hot.getDirectionCount();

std::cout << "number of directions = " << dirs << std::endl;

Here we also write out the number of directions as determined by getDirectionsCount. According to Sec. 1.3.3 this will be
d =

(
n+o−1

o

)
= 4. Then we retrieve the seed matrix S and initialize the input coefficients xi1 = si ∈ IRn, i = 1, . . . , d in the

program done as follows

// get the seed matrix

Matrix<unsigned int> seedMatrix=hot.getSeedMatrix();

// set the input coefficients

for(i=1;i<=dirs;i++) {

a.set(i,1,seedMatrix[0][i-1]); // first input

b.set(i,1,seedMatrix[1][i-1]); // second input

}

The Matrix template class is a very simple matrix container class provided together with the HigherOrderTensor class. The
original model computation is left untouched and in the previous step we already made the adjustment for the outputs. After
that we now retrieve the output coefficients into a coefficient matrix. The tensor interpolation interface is setup to do this
separately for each scalar output. Here we do it for a as follows.

// declare a matrix for the output coefficients

Matrix<double> outputCoefficients(o,dirs);

// transfer the taylor coefficients of a to the matrix

for(i=1;i<=o;i++) {

for(j=1;j<=dirs;j++) {

outputCoefficients[i-1][j-1]=a.get(j,i);

}

}

Now we supply the matrix to the interpolation using

hot.setTaylorCoefficients(outputCoefficients);

And finally we retrieve the compressed tensor and print the tensor elements. The compressed tensor is given as a vector
whose element order is exactly the same as the order of multiindices in the seed matrix.

std::vector<double> compressedTensor=hot.getCompressedTensor(o);

// print the assoiciated multi-index from the seed-matrix and

// the tensor element value

for(i=1;i<=dirs;i++) {

std::cout << "a";

for(j=1;j<=n;j++)

std::cout << "[" << std::setw(1) << seedMatrix[j-1][i-1] << "]";

std::cout << " = " << compressedTensor[i-1] << std::endl;

}

The output will be shown and explained in the next section. The source code complete with all changes discussed so far is
shown in Fig. 2.2.

4See RapsodiaExamples/CppStepByStep/driver.cpp. The Rapsodia regression tests also contain a Fortran example where the respective Fortran
usage can be seen in file RapsodiaExamples/F90StepByStep/driver.f90.
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#include <iostream>
#include <cmath>

#include <iomanip>

#include "RAinclude.ipp"
#include "HigherOrderTensor.hpp"

int main(void){
int i,j;
unsigned short n=2,o=3;
HigherOrderTensor hot(n,o);
int dirs=hot.getDirectionCount();
std::cout << "number of directions = " << dirs << std::endl;

RAfloatD a,b; // inputs & outputs
RAfloatD c,d; // intermediate

double p=3.14; // a parameter
// initialize inputs
a=1.5;
b=2.5;

// get the seed matrix
Matrix<unsigned int> seedMatrix=hot.getSeedMatrix();
// set the input coefficients
for(i=1;i<=dirs;i++) {

a.set(i,1,seedMatrix[0][i-1]); // first input
b.set(i,1,seedMatrix[1][i-1]); // second input

}

// here comes the program section
// where the mock up model is computed
c=sin(a*b);
d=cos(c+b);
a=exp(c*p);
b=sqrt(-d*p);
// now we are done with the model
// and use the result, e.g. print it
std::cout << "a=" << a.v << std::endl;
std::cout << "b=" << b.v << std::endl;

// declare a matrix for the output coefficients
Matrix<double> outputCoefficients(o,dirs);
// transfer the taylor coefficients of a to the matrix
for(i=1;i<=o;i++) {

for(j=1;j<=dirs;j++) {
outputCoefficients[i-1][j-1]=a.get(j,i);

}
}
// supply the coefficients to the interpolation utility
hot.setTaylorCoefficients(outputCoefficients);
// harvest the compressedTensor,
// here for the highest degree o=3:
std::vector<double> compressedTensor=hot.getCompressedTensor(o);
// print the assoiciated multi-index from the seed-matrix and
// the tensor element value
for(i=1;i<=dirs;i++) {

std::cout << "a";
for(j=1;j<=n;j++)

std::cout << "[" << std::setw(1) << seedMatrix[j-1][i-1] << "]";
std::cout << " = " << compressedTensor[i-1] << std::endl;

}
}

Figure 2.2: The source code of Fig. 2.1 augmented for Rapsodia.
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2.5 Generate the Library and Compile

The top-level generator script can be found in Generator/generator.py. It requires that two command line parameters be
specified, -o <integer> to set the maximal derivative order (in our example this is 3) and -d <integer> to set the number of
directions (in our example this is 4). As the extension indicates this is a Python script. Often the top-level Python interpreter
binary is installed as

/usr/bin/python

If the Python interpreter cannot be found in the PATH one needs to explicitly prepend the path to the command line.
Otherwise it can be left off and one just invokes

generate.py -d 4 -o 3 -c ./RALib

The -c flag indicates the name for the subdirectory into which the Rapsodia source files should be generated. The directory
is relative to the current working directory. The complete set of command line options of the generator can be displayed in
standard Python fashion with the -h switch.

Usage: generate.py { -d <DIRECTION> -o <ORDER> { -f <FDIR> | -c <CDIR> } [options] } | {-r [options]}

Options:
-h, --help show this help message and exit
-d DIRECTIONS, --directions=DIRECTIONS

the number of univariate directions (required)
-o ORDER, --order=ORDER

the maximal order of Taylor coefficients (required)
-f FDIR, --fdir=FDIR if specified, generate F90 files into FDIR
-c CDIR, --cdir=CDIR if specified, generate C++ files into CDIR
-s SLICES, --slices=SLICES

number of data slices; defaults to 1
--openmp if specified along with --slices, adds OpenMP

directives to parallelize sliced code
--openmpChunkSize=OPENMPCHUNKSIZE

if specified along with --openmp, sets the chunk size
to schedule per iteration (defaults to 1)

--orphan if specified along with --openmp, uses orphaned OpenMP
directives (EXPERIMENTAL)

-q, --queue use a queue and threads to calculate derivatives
asynchronously; usable only with -c, conflicts with -f

-t, --temporariesBug workaround compiler bugs in sunCC and xlC related to
unnamed temporaries in expressions; requires -q

--disableInit use this to improve efficiency but only if the code
does not contain array initialization with partial
initialization lists; refer to the manual for
details;

--useOPA use OpenPA in queue implementation; implies -q
--inline generate C++ files using the inline directive
--interoperable generate interoperable type declarations using C

structs for C++ and iso_c_binding for Fortran
--fixedFormat generate Fortran files in fixed format; default is

free format
--cppHeaderExtension=CPPHEADEREXTENSION

file extension for C++ header files; default is ’.hpp’
--cppIncludeExtension=CPPINCLUDEEXTENSION

file extension for common C++ code snippets included
in the generated code; default is ’.ipp’

--cppSourceExtension=CPPSOURCEEXTENSION
file extension for C++ source files; default is ’.cpp’

--fortranIncludeExtension=FORTRANINCLUDEEXTENSION
file extension for Fortran includes; default is ’.i90’

--fortranSourceExtension=FORTRANSOURCEEXTENSION
file extension for Fortran source files; default is
’.f90’

--floatingPointExceptions
generate extra code that tests for boundary cases and
prevents some floating point exceptions

--sequenceType generate Fortran derived types as SEQUENCE types
needed for use in common blocks or other sequence
types

--withOpenADconversions
generate definitions for conversion routines reference
in code that has was transformed for type change with
OpenAD

-r, --reverse enable reverse mode
--doubleOnly double presicion only [Default=False] [Reverse Mode]
--tl=TL local tape size [Default=1000] [Reverse Mode]
--ll=LL initial location size [Default=4000] [Reverse Mode]
--bs=BS stack block size [Default=4096] [Reverse Mode]
--loc accumulation on int [Default=False] [Reverse Mode]

[Fortran Only]
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1 ifndef RAPSODIAROOT
2 $(error "environment variable  RAPSODIAROOT undefined")
3 endif
4 include ${RAPSODIAROOT}/MakeDefs.mk
5 include ${RAPSODIAROOT}/MakeRules.mk
6
7 default: driver
8 ./$^
9

10 GEN_DIR=RALib
11
12 RA_EXTRAS=${RAPSODIAROOT}/hotCpp
13 IPATH+=-I$(GEN_DIR) -I$(RA_EXTRAS)
14
15 OBJS= \
16 $(addprefix $(RA_EXTRAS)/, $(addsuffix .o, $(HOTCPPNAMES))) \
17 driver.o
18
19 driver: $(OBJS) $(GEN_DIR)/libRapsodia.a
20 $(CXX) $(CXXFLAGS) $(IPATH) -o $@ $^
21
22 $(GEN_DIR)/libRapsodia.a : FORCE
23 ${RAPSODIAROOT}/Generator/generate.py -d 4 -o 3 -c $(GEN_DIR)
24 cd $(GEN_DIR) && $(MAKE)
25
26 FORCE:
27
28 clean:
29 rm -rf $(GEN_DIR) *.o driver driver.out
30
31 .PHONY: default clean
32
33 driver.cpp:$(GEN_DIR)/libRapsodia.a

Figure 2.3: Makefile for our example.

number of directions = 4
a=0.166177
b=1.04843
a[0][3] = -15.9285
a[1][2] = -22.3432
a[2][1] = -37.2386
a[3][0] = -73.7429

Figure 2.4: Output generated by running our example.

One should specify at least one of the switches -c or -f, otherwise no source would be generated. An example for the generate
and build steps is given in RapsodiaExamples/CppStepByStep/Makefile (see also Fig. 2.3). The generate step is on line 23.
The generator writes a set of files into the directory specified with the -c switch, see lines 10 and 23. Among the generated
files are a single file RAinclude.ipp (or RAinclude.i90, resp.) for comprehensive inclusion of generated definitions in user
code, To compile the user code one extends the include path by this directory, see line 13. Among the generated files is also
a Makefile to compile the generated library itself which is in our example accomplished by the action on line 24, that is, it
immediately follows the code generation.

The compile rules and definitions of the other variables is supplied by the files included on lines 4 and 5. These files were
created during the configuration of Rapsodia (Sec. 1.1.2) and reflect the choice of compilers and other options made at that
time. These files are intended to maintain consistency in settings between the support code, the generated code, and the
user code with respect to the compiler and preprocessing flags, e.g. for inlining. Their use is recommended in the user build
setup but not strictly required. As their names suggest

MakeDefs.mk provides definitions of the commonly used variables for compilers, linkers and flags and also - as a consistency
check - tests these variables if they were predefined for consistency; it also sets variables for mixed language compilation
and linking, see Sec. 2.5.5 and to indicate what features are enabled.

MakeRyles.mk provides common suffix rules.

Because the example uses the higher-order tensor logic (cf. Sec. 2.4) we need to link the respective object files that are
provided with HOTTCPPNAMES (or HOTF90NAMES), see lines 12 and 16.

At the end of Sec. 2.4 we added code to print the interpolated tensor entries. The produced output from the compiled
example is shown in Fig. 2.4. Following the explanation in Sec. 1.3.3 we see that there are four distinct tensor elements for
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column in S multiindex entry in D3 compressed tensor index

1 (0, 3) ∂3a
∂b3 1

2 (1, 2) ∂3a
∂a∂b2 2

3 (2, 1) ∂3a
∂a2∂b

3

4 (3, 0) ∂3a
∂a3 4

Table 2.2: Tensor entries ordered by multiindex (see also Fig. 2.4). While there is only one program variable a here its use
distinguishes the different values, i.e. the input value and output value that a can attain.

n = 2 and o = 3, that is we need to set d = 4. The third order tensor of the output a with respect to the two inputs a and b

has therefore the entries listed in Table 2.2.
In the example code we retrieve only the coefficients for the first output variable a. To retrieve the tensor for the second

output variable b the only thing to change would be the line that populates the outputCoefficients matrix to

outputCoefficients[i-1][j-1]=b.get(j,i);

Without any new computation, one can retrieve the entries of the lower order tensors. For instance for the Hessian entries
one could add

// harvest the compressedTensor,

// here for the degree 2

std::vector<double> compressedHessian=hot.getCompressedTensor(2);

// to print it nicely get the multiindices for the Hessian

HigherOrderTensor hessHelp(n,2);

dirs=hessHelp.getDirectionCount();

// get the hessHelp seed matrix

Matrix<unsigned int> hessHelpSeed=hessHelp.getSeedMatrix();

for(i=1;i<=dirs;i++) {

std::cout << "a";

for(j=1;j<=n;j++)

std::cout << "[" << std::setw(1) << hessHelpSeed[j-1][i-1] << "]";

std::cout << " = " << compressedHessian[i-1] << std::endl;

}

A different example can be found in the regression test cases for the function

y = f(x) =

3∏
i=1

sin(xi) .

The directories RapsodiaExamples/hotCppR/ and RapsodiaExamples/hotF90R/ contain the C++ and the Fortran version
of this example, respectively.

2.5.1 Slicing for large problems using --slices

As the values for -d and -o increase, the generated code grows exponentially. To reduce this code explosion, Rapsodia
provides the -s/--slices flag, which, when specified, breaks the generated code into the given number of slices. Thus,
rather than having a flat data structure to maintain the derivatives, the structure is broken into n arrays, where n is the
number of slices specified by the user. This greatly reduces code bloat and increases both the speed of compilation and even
the speed of execution for certain operators.s Consider the following call to the generator.

generate.py -d <d> --slices <s> ....

Given the number d of directions the recommendation is that number s of slices be a divisor of d or else generate.py
will issue a warning message and internally increase d to be the next largest multiple of s. Our runtime experiments indicate
that the overhead for s not being a divisor of d is significant. Slicing is a prerequisite for the parallel execution described in
Sec. 2.5.2 and the performance tests are described in [1].
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ifndef RAPSODIAROOT
$(error "environment variable RAPSODIAROOT undefined")
endif
include ${RAPSODIAROOT}/MakeDefs.mk
include ${RAPSODIAROOT}/MakeRules.mk

GEN_DIR=RALib

ifndef RA_USE_QUEUE
default:

@echo "Rapsodia was not configured for using the queue setup"
else
default: driver

./$^

RA_EXTRAS=${RAPSODIAROOT}/hotCpp

IPATH+=-I$(GEN_DIR) -I$(RA_EXTRAS)

OBJS= \
$(addprefix $(RA_EXTRAS)/, $(addsuffix .o, $(HOTCPPNAMES))) \
driver.o

driver: $(OBJS)
$(CXX) $(CXXFLAGS) $(IPATH) -o $@ $(OBJS) -L$(GEN_DIR) $(RA_CXX_LIBS)

$(GEN_DIR)/libRapsodia.a: FORCE
$(RAPSODIAROOT)/Generator/generate.py -d 126 -o 4 -c $(GEN_DIR) -s 3 -q
cd $(GEN_DIR) && $(MAKE)

FORCE:
endif

clean:
rm -rf $(GEN_DIR) *.o driver

.PHONY: default clean

driver.cpp:$(GEN_DIR)/libRapsodia.a

Figure 2.5: Makefile for queue example.

The above is illustrated in the examples found under RapsodiaExamples in F90StepByStepSlices and CppStepByStepSlices,
see Sec. 2.8. The use of the slicing is entirely encapsulated in the generated library. Therefore the source code in driver.f90

and driver.cpp is identical to the respective driver files in F90StepByStep and CppStepByStep while the only difference in
the respective Makefiles is the addition of the -s option, cf. Fig. 2.3.

2.5.2 Parallelized execution using --queue

A parallelization is possible because the propagation of Taylor polynomials in each of the d directions are mutually independent
except for the coefficient a0, see (1.2). Therefore the set of polynomials may be split into slices, see Sec. 2.5.1, and the
propagation of each slice can be assigned to a separate thread to make use of current shared memory multicore hardware.
To reduce execution dependencies between the threads the propagation can be dispatched asynchronously by placing the
necessary information into a queue from which the propagation threads read. The approach is described in detail in [1].

In order to use the queuing functionality, the library must be configured with --queue, see also Sec. 1.1.2. This
flag causes modifications in the MakeDefs.mk and MakeRules.mk files which the configure.py script creates in Rapsodia/.
Then the generator must be called with the --queue option in conjunction with --slices where the number of slices
specified determines the number of propagation threads to be launched. The generated library is adapted to setup the queue
and launch the threads such that no changes in the user code are necessary.

The above is illustrated in the example found in RapsodiaExamples/CppQueue, see Sec. 2.8. As already mentioned, there
is no logic in CppQueue/driver.cpp that is specific to using the queue. Reviewing the CppQueue/Makefile, see Fig. 2.5, one
notices in comparison to Fig. 2.3 the only two essential differences to be the flags -s 3 -q (short for --slices and --queue)
at the call to generate.py and the $(RA CXX LIBS) referenced in the link step. The latter is set in MakeDefs.mk to refer to
the POSIX threading library and optionally to the OpenPA library if so configured, see also Sec. 1.1.2.

2.5.3 Parallelized execution with OpenMP (experimental)

An experimental addition to Rapsodia is the ability to test various AD parallelism techniques implemented with OpenMP.
These have not been fully optimized, so the results may be slower than expected. They provide a first look at using parallelism
with AD and an easy way to test various approaches.
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To enable OpenMP parallelism, use the -m/--openmp flag, where the flag parameter represents the chunk size (for most
scenarios this can be set to 1). -m must be used along with -s/--slices. The options used in association with OpenMP are
as follows:

-m / --orphan - Causes the generated code to use orphaned OpenMP directives.

--queue - Places derivative computations in a queue running in a separate thread to be computed asynchronously from the
main program. It can be used in conjunction with --orphan.

2.5.4 Language Specific Options

Inevitably there are a few language specific options that one needs to control the code generation.

2.5.4.1 C++

--inline : inject inline directives into the C++ code to guide compiler optimization. This changes the structure of the
generated library. The .cpp are now included by the respective .hpp files as opposed to the non-inlined version where
the .hpp files are inlcuded the .cpp files.

file naming options: The options

--cppHeaderExtension

--cppIncludeExtension

--cppSourceExtension

as their names suggest, determine the extensions of the generated file names.

--disableInit : the default constructors of the active types behave as if each declared variable was explicitly initialized
to 0.0. This is necessary for the case of an implicit zero initialization of arrays of active variables through a (partial)
initializer list. Consider the example declaration

double a[3]={2.0};

which according to the C++ standard implies that a[0] is initialized with 2.0 and a[1] and a[2] are initialized with
0.0. If the statement is changed to the active type

RAfloatD a[3]={2.0};

the semantics has to be preserved. The first element a[0] is constructed with the explicitly given value by calling
RAFloatD(2.0). However, for the remaining implicitly initialized array elements, rather than calling the RAFloatD(const
double&) constructor and passing 0.0, the C++ standard prescribes calling the default constructor. Thus, these array
elements remain improperly uninitialized and we have the wrong semantics unless we force the default constructor to
always assume initialization to 0.0. An example can be found in RapsodiaExamples/CppArrayInit, see Sec. 2.8.1.
If one can ascertain the absence of constructs of the above type one can generate with --disableInit and thereby
improve the efficiency.

2.5.4.2 Fortran

--fixedFormat : generated Fortran code adheres to fixed format syntax.

file naming options: The options

--fortranIncludeExtension

--fortranSourceExtension

as their names suggest, determine the extensions of the generated file names.

--sequenceType : injects the sequence qualifier into the Rapsodia type definitions. This qualifier is needed when the
Rapsodia types are used in common blocks or within other derived types that themselves are declared as sequence type,
see also Sec. 2.8.2. Because this can restrict some compiler optimization it is optional.

.........................................................................................
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2.5.5 Mixed Language Models

2.6 ERROR Catalogue

error explanation
RE1 A get or set method was called with a value for the direction parameter that is less than 1 or larger

than the value for d supplied to generate.py, when the library was generated. Adjust the parameter
in your code or regenerate the library.

RE2 A get or set method was called with a value for the order parameter that is less than 1 or larger than
the value for o supplied to generate.py, when the library was generated. Adjust the parameter in
your code or regenerate the library.

2.7 Simple Generator Modifications

While the user can in principle change all aspects of the generator by virtue of modifying the Python source code, we point
out the intended approach to quickly achieve some simple modifications.

2.7.1 Changing Prefixes and Names in the Generated Code

Because the Rapsodia library should be usable in the context of any large Fortran or C++ environment, we made the file
and type names configurable such that naming conflicts can be easily avoided. All file and type names have a tool prefix that
is by default defined in

Generator/Common/names.py

as pN = ’RA’. In cases of name clashes, this definition can be changed. The same file also contains the definitions for the
other portions of precision, type, and structure element names referenced by the generator.

2.7.2 Changing Precision and Type

Fortran and C++ differ in the determination of the precision and the available floating-point types. Table 2.1 lists the
default precision and type combinations. The lists of basic types and precision variants are associated with the lan-
guage specific printer classes. The respective classes for C++ and Fortran are defined in Generator/Cpp/Printer.py

and Generator/F90/Printer.py. Each printer class has a

list of types: typeList

and a

dictionary5 of precisions: precDict.

The combination of the two yields all the generated active types. In Fortran the precision dictionary is used to predefine
kind values generated into RAprec.f90. In C++ we just use typedef to define the respective variants in the generated
file RAprec.hpp. The order (lower to higher) in typeList and precDict is significant because we compare the position
to determine the result type that is generated for bivariate, mixed-type elementary operations. For passive arguments we
initialize passiveTypeList to the integer type (and int for C++, resp.) to which all combinations of typeList and
precDict are appended in order to cover bivariate elementary operations with a passive argument.

2.8 More Examples

All source code references in this section refer to the RapsodiaExamples repository, see Sec. 1.1.4.

CppOneMinute - is discussed in Sec. 1.2

CppQueue - is discussed in Sec. 2.5.2

CppStepByStepSlices / F90StepByStepSlices are discussed in Sec. 2.5.1

5 the Python kind
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2.8.1 CppArrayInit - C++ array instatiation with initializer list

The source code for this example can be found in CppArrayInit. This example illustrates the need for the explicit setting
of the Taylor coefficients in the default constructor. The line in question is
RAfloatD x[n]=2.0;

where a value of 2.0 is assigned to the first, and 0.0 to each subsequent array element. The initialization is controlled by
the generator flag --disableInit. The rationale for it is discussed in Sec. 2.5.4.1.

2.8.2 F90SequenceType - Fortran with common blocks and derived types

The source code for this example, see Fig. 2.6 can be found in F90SequenceType and demonstrates the use of --sequenceType,
see also Sec. 2.5.4. The use of the RARealD type in the common block cb (lines 15 and 26) as well as in the type t (line 6)

1 module m
2 include ’RAinclude.i90’
3 public
4 type t
5 sequence ! makes sequence in RARealD necessary
6 type(RARealD) :: x,y
7 end type t
8 end module m
9

10 subroutine foo(o)
11 include ’RAinclude.i90’
12 use m
13 implicit none
14 common /cb/ a,b,c
15 type(RARealD) :: a,b,c
16 type(t) :: o
17 o%x=sin(a∗b) ! made up for demonstration
18 o%y=cos(a∗c) ! made up for demonstration
19 end subroutine
20
21 program driver
22 include ’RAinclude.i90’
23 use m
24 implicit none
25 common /cb/ a,b,c ! makes sequence in RARealD necessary
26 type(RARealD) :: a,b,c
27 type(t) :: output
28 real(kind=RAdKind) :: temp
29 character(∗), parameter :: fString=’(I6,I10,A,E25.17E3)’
30 integer :: i,j
31 integer :: n=3 ! for a,b,c
32 integer :: o=3, d=2 ! made up for demonstration
33 a = 1.5; b = 2.5; c=3.5
34 do j = 1, d ! set first order coefficients
35 call RAset(a, j, 1, 1.0D0)
36 call RAset(b, j, 1, 2.0D0)
37 call RAset(c, j, 1, 3.0D0)
38 end do
39 call foo(output) ! compute output
40 write (∗,’(A)’) ’output values:’
41 write (∗,’(A,E25.17E3)’) ’ output%x = ’, output%x%v
42 write (∗,’(A,E25.17E3)’) ’ output%y = ’, output%y%v
43 write (∗,’(A)’) ’Taylor Coefficients:’
44 write (∗,’(A)’) ’ order direction value’
45 do i = 1, o
46 do j = 1, d
47 call RAget(output%x, j, i, temp)
48 write (∗,fString) i,j,’ output%x = ’, temp
49 call RAget(output%y, j, i, temp)
50 write (∗,fString) i,j,’ output%y = ’, temp
51 end do
52 end do
53 end program

Figure 2.6: Source code of F90SequenceType/driver.f90

which itself is declared as sequence requires that RARealD be defined with the sequence qualifier as well. One simply passes
the --sequenceType to the generator call, see F90SequenceType/Makefile to effect this change.
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2.9. Regression Tests

time used (sec.microsec) is: 0.006228
for 1000 repeats

Figure 2.7: Exemplary first two lines of output of CppSimpleTiming/driver

2.8.3 Timing Examples

Of particular interest in the context of Rapsodia is the ratio of the time needed to computate the desired respective derivatives
over the time needed to compute the numerical model (1.1) itself. While theoretical estimates in terms of numbers of
operations and memory accesses are known [4] the practical results significantly depend on a variety of factors.

• compiler vendor / compiler version / optimization flags

• target programming language

• hardware platform and OS (version)

• the memory footprint of the original code implementing (1.1)

• the choices of o and d

• the percentage of linear/non-linear operations

• the amount of time spent in logic that is not to be differentiated (I/O. memory management etc.)

Because there are so many factors impacting the performance the true timing ratio has to be determined for the given
implementation. Here we give a few generic examples to give an impression for the performance to be expected but do not
claim to have covered a large portion of the application space. The examples should serve as a starting point for a user’s
own timing experiments.

2.8.3.1 CppSimpleTiming

The example measures the time taken to compute the 50th derivative of

y = ex
4
5

by running 1000 repeats of the computation. The output shown in Fig. 2.7 was taken from an execution of the test code on a
Linux virtual machine running on a Macbook Pro (2.66 GHz Intel Core i7) compiled with g++ -O3. It shows the execution
of a single run in about 6µs to be in line with what one would expect based on the operations count.

2.8.4 Extras

This section covers the examples found under RapsodiaExamples/Extras.

2.8.4.1 PTHO99 - Fortran with blas and lapack

This example illustrates a brute force differentiation through a subset of the lapack and blas routines. While we generally
recommend to explicitly code library derivatives instead of differentiating through libaries, it illustrates some
aspects of the Rapsodia usage. – to be completed –

2.8.4.2 Timinigs - for various compilers and hardware

– to be completed –

2.9 Regression Tests

All source code references in this section refer to the RapsodiaRegression repository available in the same way as the
examples repository, Sec. 1.1.4.

2.9.1 CppHotN1 and F90HotN1 - test multiindex corner case for n = 1

The source code for these examples can be found in CppHotN1 and F90HotN1 respectively. These test the logic implemented
for the multiindices if n = 1 in (1.1).
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Chapter 3

Generator Design and Extensions

This section provides some details on the design of the code generator, the libraries it produces and instructions on how to
implement the code generation for an elementary function. Readers may skip this section unless they intend to fundamentally
modify the code generator or extend its functionality. The source code is released under the LGPL. We would encourage any
extensions to be contributed to the Rapsodia main line. The process is explained on the Rapsodia website.

The names given in the following sections are relative to the Generator subdirectory.

3.1 Design

We selected Python [8] to implement the generator, in part because we were able to use a code generator in PETSc [6] as
a starting point, but mainly because it is readily available in most computing environments and the Python programming
model appears to be a good fit for the size of this project. The Rapsodia generator consists of three major parts.

1. definitions for classes that form the elements of an abstract syntax tree (AST); see in particular
Generator/Common/ast.py

2. methods to generate the Taylor coefficient propagation logic expressed as an AST; see the code in
Generator/generate.py and the code in the files Generator/Common/genOp*.py

3. methods for printing the AST-based representation as source code; see Generator/F90/Printer.py for Fortran and
Generator/Cpp/Printer.py for C++

3.1.1 Aspects of the Code Generation

1. Unrolled Loops and Flat Data Structure Hand-written code and general-purpose AD tools will typically use loops
and arrays to implement the propagation logic of the Taylor coefficients given as formulas for instance in [4]. Our code
generator creates an overloading library in which all loops are unrolled for a fixed order and fixed number of input variables
and in which the active type is represented as a flat structure, that is, without the use of arrays. The observed performance
improvements can be attributed to widening the scope of such compiler optimizations that are normally limited by the loop
and other control flow constructs, and to reducing the conservative aliasing overestimate because of the lack of array accesses.
We recognize and exploit the fact that the underlying semantics of the Taylor coefficient formulas can be rewritten as code
generating logic. This logic has loops and the notion of indices that are similar to the hand-written Taylor propagation code.
However, instead of computing values, the code generator creates expressions and concatenates indices to variable names
while iterating through these loops. Thus, it creates the exact same semantics but at a syntactic level that is considerably
lower than typical hand-written code and is more amenable to compiler-level optimization. We are aware of the plethora of
different ways to express the propagation semantics as generated source code. One might consider a range, perhaps beginning
from simple variations of AD02-like source with loops that have compile-time constant loop bounds to source code that uses
additional local variables to aid register allocation. While the former falls short of the code generator’s potential, the latter
would already be somewhat hardware and compiler specific. We believe our approach constitutes a plausible compromise.

2. Complete Set of Type Combinations The generator creates all relevant argument combinations for elementary
operations, assignments and copy constructors based on a list of precisions and types. Fortran does not provide default (up)
conversions of the built-in types to facilitate a match to overloaded methods. Overloaded versions for all type combinations
have to be defined explicitly and the generator can easily take over this arduous task.
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The result type is determined based on argument types emulating in a limited fashion the language built-in typing rules.
In particular, for assignments (and copy constructors) we do not generate assignments that would inadvertently permit a loss
of information or precision such as assigning an active variable to a floating-point variable. Generating all the combinations
prevents implicit conversions in particular in C++ using copy constructors from passive to active arguments for elementary
operations and therefore avoids extraneous computations for variables that are not active.
3. Common Logic for Fortran and C++ While it is easy to see the common logic for implementing the Taylor
propagation for the elementary operations some of the other parts have less commonality. For the outer structure of the
library we can still achieve some common design, thus eliminating language specific generator portions. Rather than making
the definitions of the elementary operations type members, we decided to keep them separate. In particular, for some of
the C++ operators one might normally prefer the member declaration over a separate, nonmember declaration, but this
approach would not cover to all argument combinations of binary operators, and Fortran does not have the syntactic option.
A welcome side effect of separate source files is a less bulky compile step. For a nontrivial order and number of directions,
the compiler optimization can take a noticeable amount of time and memory. Splitting up the library source files in this
fashion reduces the compiler’s resource requirements.

3.1.2 The Abstract Syntax Tree

Many elements found in the AST implementation are what one would expect for languages such as Fortran. Their meaning
and use are either obvious from the class name or explained in the accompanying doc string. We did not attempt to
abstract concepts from Fortran and C++ to the greatest possible extent because of the limited scope of the code that is to be
generated. More abstraction would unnecessarily complicate the AST generation step. Consequently, the AST is restricted
to the relevant language features, and we allow some shortcuts for either C++ or Fortran language-specific features; see also
Sec. 3.2. The latter are used sparingly and therefore are not a conceptual concern. Each AST node subclass implements an
accept method that calls a specialized method on a supplied visitor instance. For instance, the accept of Assignment
calls visitor.visitAssigment. The implementation of the latter is explained at the end of this section.

3.1.3 Overview of Generated Code

The principal building blocks of the overloading library consist of language specific portions (items 1–4) for the building
blocks of the active types on which we operate and the main part, overloading the elementary functions (item 5), as follows.

1. A set of definitions for floating-point precision:
This is generated from the precDict contents by the following methods.
C++: Cpp.Printer.CppPrinter.generatePrecision
Fortran: F90.Printer.F90Printer.generatePrecision
See also Sec. 2.7.2

2. A set of active types:
This is generated as an outer product of the typeList and the precDict contents by generateTypes defined in the
same language-specific manner as generatePrecision above. See also Sec. 2.7.2.

3. Type-specific accessors for the derivative components via integer parameters for direction and order:
Because the generated code uses a flat data structure it is convenient to have these methods such that the flat structure
can be accessed in an array-like fashion. The generator uses the following methods again defined in the respective
printer classes.
C++: generateTypeGetter and generateTypeSetter

Fortran: generateTypeGetterSetter

4. A set of assignment operators, and additionally for C++ a set of copy constructors:
C++: generateCopies (as part of the active type class)
Fortran: generateAsgn (in a separate module)
See also Sec. 3.2.2.

5. For each elementary operation we generate

• declarations for all relevant combinations of active arguments

• definition stubs

• definition bodies included in the stubs

See also Sec. 3.3.

6. generate C++ and Fortran output
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Because the language-specific portions of the output logic are contained in the respective printer classes it is reasonable to
also place language specific generator logic (items 1-4) into these classes.

3.1.4 Printing the AST as Fortran or C++

Once the Taylor propagation logic has been generated as an AST, we can print the contents as Fortran or C++ code by
visiting all nodes in the AST in depth-first fashion. As explained in Sec. 3.1.3 there is a printer class implementation
for each language. Both inherit from Common.depthFirstVisitor.DepthFirstVisitor. This visitor base class provides
default implementations for all the specialized visit<node name> methods called in the accept implementations of the
AST node name. The default visit implementation does nothing other than to proceed to the current node’s children. The
subclasses F90Printer and CppPrinter override the default implementations as necessary to produce an output stream. For
instance, F90Printer overrides visitAssignment such that it first prints the left-hand side by calling accept on the first
child node, then prints the identifier member ’=’, and then prints the right-hand side via a call to accept on the second
child node.

We want to point out a tradeoff in the AST design. Taken the assignment, for example, it is of course possible to declare
specifically named members such as mRHS and mLHS for the left- and right-hand sides instead of the more anonymous first
and second child in the base class list Common.ast.Node.children. On the other hand, such a specialization also requires a
specialized default implementation for DepthFirstVisitor.visitAssignment, and one loses the convenience of the generic
tree traversal done with visitChildren. Our choices represent a compromise we find to be balanced. The subclasses
F90Output and CppOutput redirect their respective output streams into physical files.

3.2 Language-Specific Concerns

Numerous differences exist between C++ and Fortran. In the following we explain those that are relevant for the Rapsodia
generator.

3.2.1 Module vs. Header and Source

A Fortran module file contains both declarations and subroutine definitions, while in typical, noninlined C++ the declarations
are in some header file and the definitions in a separate source file. To allow for both concepts, the AST has an ObjectSource

class that encapsulates declarations and definitions. For an ObjectSource instance, the Fortran printer produces a single
file with the module source code, while the C++ printer produces a header and a separate source file. References to such
declarations are done in Fortran by a use statement and in C++ by an #include, both of which are represented in the AST
by an instance of the Common.ast.ObjectReference class.

3.2.2 User-Defined Type Assignments and Copy Constructors

In Fortran, assignments to a user-defined type can be defined in a module different from the module containing the type
definition itself. In C++, such assignments have to be members of the defining class. Consequently, the logic to generate this
code is language-specific and attached to the respective printer class. While the generator covers all argument combinations
for the elementary operations, there remains a need for defining copy constructors for calling user-defined methods that have
active arguments. Similarly to the example in Sec. 2.3 we can consider

void foo(const double& a, double& b);

whose signature may be changed to

void foo(const RAfloatD& a, RAfloat& b);

but when called with a constant literal

RAfloatD s;

foo(2.5, s);

there has to be a copy constructor to convert the constant literal into an RAfloatD instance. Like the assignment operators
the copy constructors in C++ have to be members of the type defining class.

As indicated in Sec. 2.3 for Fortran this situation is currently not solvable via the library (because the standard does not
provide a feature resembling a C++ copy constructor).
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Fortran C++
a**b pow(a,b)

int N/A
nint N/A
real N/A
\= !=

sign N/A
sum N/A
matmul N/A
maxloc N/A
maxval N/A
abs(f) fabs(f)

Table 3.1: Partial list of differences in elementary operations

3.2.3 Overloading

While overloading in C++ allows declarations with different argument types and the same method name, Fortran module
interfaces contain module procedure declarations with different names which resembles a manual name mangling. To cover
both concepts we generate for each specific operator/intrinsic overloading two subtrees. One subtree is used for the module
contains section (or the source file for C++). The second subtree is identical to the first except it does not contain the
actual implementation body. It is used for declarations in module interfaces (or header files for C++) with a signature
specific appendix (for Fortran) or all arguments with types (for C++). The declaration and definition subtrees are collected
in two groups that are children of a common ObjectSource node. The printer class distinguishes the declaration from the
definition context and produces the proper output.

3.2.4 Elementary Operations

With a few exceptions the uses of elementary operations φ are identical in Fortran and C++. One such exception is φ ≡ ab,
in Fortran expressed as operator a**b and in C++ as an intrinsic function pow(a,b). The respective printer classes ensure
the proper representation. Another set of differences relates to the combinations of permitted argument types. While the
generator produces all combinations of arguments, the printer classes filter out all invalid cases. In the same spirit as the
limited generalization of the AST explained in Sec. 3.1, we view this pragmatic solution as a good compromise, given the
limited scope of the generator. Table 3.1 gives a list with some differences regarding the elementary operations.

3.3 Implementing an Elementary Operation

To illustrate the steps for implementing an elementary operation, we use the multiplication operator for a*b. We start with the
logic for the propagation of the Taylor coefficients. For a given activity pattern of the arguments this logic is identical across
all variations of the actual active type. As for most elementary operations we generate the common logic into a separate file
that is then included into the respective method stubs that implement the overloaded operation. The multiplication operator
can have two active arguments, covered by Common.genOpMult.genOpMultAABody, or only one active argument. The latter
is distinguished by either the left or the right operand being active; see a Common.genOpMult.genOpMultAPBody, where we
simply multiply the value and all Taylor coefficients by the respective passive argument. The only distinction in the two
method bodies (see the generated RAmultAP1 and RAmultPA files) are the names of the active vs. the passive variable. The
case for two active arguments requires a convolution on the Taylor coefficients for each direction i:

o∑
j=0

aij ∗ bio−j

. Because convolutions occur with a few variations in a number of elementary operations, we extracted the generator logic
into Common.util.generateConvolution. The operator implementation body is written to file with the base name RAmultAA
and the appropriate language-specific extension. We now need to generate the method definition stubs for all appropriate
argument type combinations and the include statement for the logic generated above. The same logic can be used to also

1 The generated file names have language-specific extensions left off here.
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generate the accompanying method declarations by simply leaving off the parts for the method body, which completes the
generation steps of the product operator.

Because the stub declaration and definition are common to all the bivariate operators, we extracted the logic into
Common.util.generateBinaryIntrinsic and call this in Common.genOpMult.genMult. The Common.util.Util class also
provides common elements for the generation of unary operators; see, for example, Common.utile.Util.generateUnaryOpAll
used in the source file Common/genOpSinCos.py. Referring to the existing implementation as an example, one can extend
the library for additional elementary operations.

3.4 The implementation of HigherOrderTensor

The source code for computing the multi-indices/directions si and the interpolation routines are in Rapsodia/hotF90 and
Rapsodia/hotCpp. Because of syntax differences, the interfaces differ slightly between C++ and Fortran. As with the set

and get methods for the active types we did not abandon the more concise style of calling a member function in the C++
implementation just because Fortran does not provide it. All functionality is tied to a HigherOrderTensor object, which
needs to be initialized with n and o. The direction count d as well as the matrix S = [si] ∈ INn×d

0 can be obtained by
calling getDirectionCount and getSeedMatrix, respectively. Assuming the Rapsodia library has been generated for the
given o and d, one can then compute and set the output Taylor coefficients for a single output yi as a IRo×d matrix by
calling setTaylorCoefficients. For that particular output variable one retrieves the entries of any Dj , j ∈ [1 . . . o] by
calling getCompressedTensor. This returns a vector of length

(
n+j−1

j

)
whose lth entry corresponds to the lth multi-index

sl returned by getSeedMatrix computed for order j. In particular for order o, getCompressedTensor returns a vector of
length d whose lth entry corresponds to the lth direction/multi-index we propagated through our model. In the current
implementation the pair of calls to setTaylorCoefficients and getCompressedTensor have to be repeated for each of the
m outputs.

3.5 Contributing to the Rapsodia Source Code and this Manual

The development version of the Rapsodia sources and this manual are kept under mercurial revision control. Please refer to
the Rapsodia website for details.
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